Extrait de Réda Benkirane, La Complexité, vertiges et promesses. Histoires de sciences. Nouvelle édition, Benguerir, UM6P-Press, 2023.
[Algorithme, Automate, Courbes d’apprentissage, Criticalité auto-organisée, École de Francfort, Effet Turing, Équation de Schrödinger, Entropie, Gauss Carl Friedrich, Hasard, Hilbert David, Koch von Helge, Kuhn Thomas, Laplace de Pierre Simon, Lorenz Edward, Loi de Moore, Loi de puissance, Machine de Turing, Mandelbrot Benoît, Mouvement brownien, Optimisation combinatoire, Paysage évolutif ou adaptatif, Principe d’incertitude, Problèmes de croissance, Rasoir d’Occam, Réaction chimique de Belouzof-Zhabotinsky, Reine rouge, Réseaux d’automates booléens, Réseaux de spins, Réseau génétique régulateur, Riemann Bernhard, Symétrie, Somme de Feynman, Tabula rasa, Théorie des cordes, Théorème de l’incomplétude, Théorie algorithmique de l’information, Thermodynamique, Voyageur de commerce, Weierstrass Karl]Algorithme : l’ensemble des règles opératoires dont l’application permet de résoudre, au moyen d’un nombre fini d’opérations, un problème impliquant du calcul. Le mot vient du nom de l’astronome et mathématicien perse du ixe siècle Muhammad ibn Musa Al- Khawarizmi (env. 780-850, latinisé en algorithmus), à qui l’on doit l’introduction en Europe de l’algèbre, des règles de l’arithmétique et des tables trigonométriques. Al-Khawarizmi, savant de l’école de la Sagesse de Bagdad, est entre autres l’auteur du premier livre consacré à l’algèbre (Kitab al jabr wal muqabala) et d’un traité d’arithmétique (Al jam’ wal tafriq bil hisab al Hind, traduit en latin au xiie siècle) qui expose l’ensemble des règles de calcul en provenance d’Inde. C’est essentiellement cet ouvrage, dont un chapitre est consacré au calcul lié aux activités marchandes, qui va permettre de faire connaître le système de numération indo-arabe dans des sociétés qui ignorent encore le calcul écrit.
Automate cellulaire : modélisation de l’interaction d’un grand nombre d’éléments dont le comportement individuel est simplifié à l’extrême pour en permettre l’étude. Un automate cellulaire évolue dans un diagramme où figure son espace-temps, son état dépend à chaque instant t de l’état de ses voisins, selon une règle que l’on peut moduler à l’envi. L’automate calcule son état et celui de ses voisins, applique la règle prédéfinie, puis détermine son état suivant. Une fois que toutes les cellules ont recalculé leurs états respectifs, le processus recommence pour chaque pas de temps. Ainsi peut-on démontrer qu’à partir de règles de fonctionnement et de conditions initiales extrêmement simples, les automates cellulaires sont susceptibles de révéler des motifs comportementaux variés, imprévisibles et complexes. Dès les premières conceptualisations, dues aux mathématiciens Stanislaw Ulam et John von Neumann, les automates cellulaires ont été perçus comme des organismes désincarnés du monde physique, évoluant en parallèle par simple calcul et procédant d’une base purement logique. Depuis lors, les expériences sur automates cellulaires ont permis de simuler et de mieux comprendre toute une gamme de phénomènes complexes, en manifestant notamment leurs aspects de croissance, d’agrégation, de reproduction, de compétition et d’évolution. L’étude la plus exhaustive et la plus accessible pour le grand public est le livre du physicien britannique Stephen Wolfram, qui a consacré plus de vingt ans à ce sujet (Stephen Wolfram, A New Kind of Science, Champaign, Wolfram Media, 2002). Inventé par John Conway en 1970, le Jeu de la vie est l’un des modèles d’automate cellulaire les plus connus.
Courbes d’apprentissage (learning curves) : modèles décrivant les améliorations réelles et projetées dans la résolution de problèmes tels que les inventaires, les estimations de coûts futurs ou la détermination des taux de production optimaux.
Criticalité auto-organisée : concept énoncé à la fin des années 1980 par le physicien danois Per Bak, au Niels-Bohr Institute, notamment au travers de son « modèle du tas de sable », pour éclairer les phénomènes macroscopiques tels que les tremblements de terre, les crues du Nil, les krachs boursiers, etc. La criticalité auto-organisée et la métaphore du tas de sable sont utilisées pour étudier les liens entre certains comportements quantitatifs et qualitatifs typiques de la complexité.
École de Francfort : courant de pensée né en 1923 dans le cadre de l’Institut für Sozialforschung de l’université de Francfort. Fondé par Max Horkheimer et Theodor Adorno, ce courant propose une théorie critique du capitalisme qui cherche à refonder les sciences sociales à partir du cadre d’analyse marxiste. Fuyant le nazisme dans les années trente, les membres du groupe de Francfort émigrent aux États-Unis et découvrent la sociologie américaine. Petit à petit, ils vont abandonner la dimension marxiste de leur analyse et introduire la psychanalyse ainsi que d’autres approches pluridisciplinaires. Les principaux représentants de l’école de Francfort sont Erich Fromm, Leo Löwenthal, Friedrich Pollock, Walter Benjamin, Jürgen Habermas et Herbert Marcuse.
Effet Turing : renvoie au « jeu de l’imitation » que le logicien britannique Alan Turing a présenté dans son article Pensée et Machine (« Computing Machinery and Intelligence », Mind, vol. 59, n° 236, 1950). Cet article, qui constitue en quelque sorte l’acte de naissance de l’intelligence artificielle, décrit un dispositif où il s’agit de déterminer si les machines peuvent penser.
Équation de Schrödinger : décrit l’évolution de l’onde de probabilité d’un électron (ou sa fonction d’onde), elle constitue l’un des fondements de la théorie quantique. Cette équation porte le nom du physicien autrichien Erwin Schrödinger (1887-1961) qui a cherché à définir un cadre mathématique descriptif de la dualité onde/corpuscule de l’électron.
Cybernétique : science de la commande et du contrôle fondée dans les années 1940 par le mathématicien Norbert Wiener. Elle étudie les organismes et les machines en recourant aux approches systémiques des théories de l’information, des automates et des jeux. La cybernétique a constitué un creuset de recherches multidisciplinaires à l’origine des sciences cognitives, et en particulier de l’intelligence artificielle. Le premier courant cybernétique correspond à une perception mécaniste des systèmes où par exemple, le cerveau est appréhendé comme une machine logique, tandis que le second courant, qui remonte aux années 1960, s’inspire des logiques du vivant et s’est développé autour des notions d’auto-organisation, d’ordre et de désordre.
Entropie : mesure du niveau de désordre au sein d’un système physique. Selon le second principe de la thermodynamique, tout système tend vers une entropie maximale et donc vers un désordre croissant qui correspond à son état final.
Gauss, Carl Friedrich (1777-1855), mathématicien, physicien et astronome allemand, fut avec Nikolaï Ivanovitch Lobatchevski (1792-1856), mathématicien russe, un des découvreurs des premières géométries non euclidiennes, géométries des surfaces courbes où le postulat des parallèles n’est pas vérifiable.
Hasard : une définition très précise de cette notion est proposée par le mathématicien et informaticien Gregory Chaitin correspondant, d’une part, à un défaut de structure ou de pattern, et d’autre part, à une incompressibilité de l’information nécessaire pour le générer. Selon cette définition restrictive, une suite de nombres est dite aléatoire si, pour l’engendrer, il n’existe pas de moyen plus « économique » que de l’écrire intégralement. De même, si un nombre peut s’écrire de façon plus concise – par exemple en compactant ses redondances par une technique de compression –, alors celui-ci n’est pas aléatoire – puisqu’il existe une structure permettant de l’engendrer. De ce point de vue, pi n’est pas un nombre aléatoire puisqu’on peut le décrire et le reproduire par des mots (pi est le « rapport de la circonférence d’un cercle à son diamètre ») ou un programme informatique concis.
Hilbert, David (1862-1943), mathématicien allemand, a abordé pratiquement tous les domaines des mathématiques, mais plus particulièrement la logique, la géométrie et la théorie des nombres. Son discours, en 1909, au Congrès international des mathématiciens de Paris est resté célèbre : il y exposait une liste des problèmes à résoudre pour le XXe siècle, et effectivement, ces problèmes seront débattus, développés par plusieurs générations de mathématiciens. David Hilbert, après d’autres (dont Leibniz), a tenté d’unifier les mathématiques en les armant d’un « programme formaliste » mais dans les années trente, les travaux des logiciens Kurt Gödel et Alan Turing mettront définitivement fin à la croyance de Hilbert de pouvoir résoudre, par principe, tout problème formalisé dans la logique mathématique. Voir aussi l’entretien avec Gregory Chaitin.
Koch von, Helge (1870-1924) est un mathématicien suédois connu pour avoir découvert en 1904 une courbe continue, infinie et sans tangente délimitée au sein d’une aire finie. Cet objet mathématique, également appelé « flocon de neige », s’obtient par itérations successives. Chaque segment de la courbe est autosimilaire, c’est-à-dire que la même structure (un triangle équilatéral) est reproduite à toutes les échelles. Le flocon de Koch constitue l’un des exemples les plus classiques d’objet fractal. La courbe de Koch, ainsi que celle du mathématicien et logicien italien Giuseppe Peano (1858-1932) – qui est de longueur infinie et se construit par remplissage en passant par tous les points d’un carré –, furent mises en avant au début du XXe siècle comme des exceptions, des singularités signalant certaines limites conceptuelles des mathématiques. Un siècle plus tard, ce type d’objet fractal est cité comme cas générique des structures et formes produites par la nature.
Kuhn, Thomas, philosophe et historien des sciences américain, a proposé, dans son livre La Structure des révolutions scientifiques (Flammarion, 1976), une grille de lecture de l’histoire des sciences à partir de la notion de paradigme. Pour lui, l’histoire des sciences ne relève pas d’un processus cumulatif des connaissances mais d’une évolution ponctuée de crises intellectuelles successives menant à des révolutions scientifiques. Ainsi, Kuhn voit dans la succession de crises de l’histoire des sciences des changements de paradigme, c’est-à-dire des changements du modèle explicatif partagé par une communauté de chercheurs au sein d’une discipline scientifique.
Laplace de, Pierre Simon (1749-1827), mathématicien, physicien et astronome français, a beaucoup contribué au développement des sciences et à la modernisation de leur enseignement pendant la Révolution française. Personnage influent durant l’Empire et la Restauration, il laissa à l’histoire sa fameuse répartie à Napoléon Bonaparte – lorsque l’Empereur lui demanda : « Que faites-vous de Dieu dans votre système ? », il rétorqua : « Sire, je n’ai pas besoin de cette hypothèse », exprimant ainsi le déterminisme triomphant de son temps. Pour mieux préciser sa conception d’un univers déterministe, Laplace émit l’idée d’un « démon », esprit surhumain doué d’une puissance de calcul illimitée, capable de lire le passé et l’avenir : « Une intelligence qui, pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse, embrasserait dans la même formule les mouvements des plus grands corps de l’Univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l’avenir comme le passé serait présent à ses yeux. » Le démon de Laplace reflète la science du XIXe siècle, mais la théorie du chaos, mise en évidence pour la première fois par le mathématicien Henri Poincaré, puis la physique quantique mettront à mal ce déterminisme qui, partant de la connaissance des conditions initiales d’un système, prétendait déduire parfaitement les conditions finales.
Lorenz, Edward, météorologue du MIT (Massachusetts Institute of Technology), est considéré comme l’un des premiers scientifiques de l’ère contemporaine à s’être intéressé à l’étude du chaos et à la dynamique non linéaire. C’est en 1963 qu’il mit en évidence le caractère chaotique des conditions météorologiques et inventa la métaphore de « l’effet papillon ». Alors qu’il cherchait à étudier, sur son ordinateur, un modèle de système météorologique, il observa de façon fortuite qu’en effectuant deux fois le même calcul, il aboutissait à des résultats radicalement différents. Dans les deux simulations de son système météorologique, les conditions initiales étaient quasiment identiques mais Lorenz se rendit finalement compte que lors du second calcul, il avait incidemment introduit une différence minime dans les conditions initiales du système ; cette différence, de l’ordre de 1 pour 1 000, correspondait à négliger d’écrire les trois derniers chiffres d’un nombre à six décimales. Cette modification infime des conditions initiales suffit à produire des conditions finales divergentes. Il en tira la conclusion que les conditions météorologiques ne peuvent être prévisibles à long terme en raison de « la dépendance sensible aux conditions initiales ». La découverte de Lorenz, initialement publiée dans le Journal of the Atmospheric Sciences passa inaperçue jusqu’à ce qu’un certain nombre de physiciens, mais aussi de mathématiciens, s’y intéressent pour fournir, au début des années soixante-dix, l’ossature mathématique qui allait permettre l’étude des phénomènes chaotiques.
Loi de Moore : observation décrivant l’évolution des technologies de l’information, formulée au milieu des années soixante et portant le nom du fondateur de l’entreprise de microprocesseurs Intel, elle prédit une croissance exponentielle des performances des processeurs – la puissance de calcul d’une puce informatique double environ tous les dix-huit mois pour le même coût. Or, selon cette loi de Moore, au rythme de croissance de la puissance des processeurs et de la miniaturisation des transistors gravés sur du silicium, une limite physique fondamentale a été atteinte au seuil de 2020. À partir de ce seuil, la taille des transistors correspond à celle de quelques atomes de silicium et les aspects déroutants de la physique quantique entrent en jeu. En raison de cette limitation physique que la miniaturisation des composants rencontre inéluctablement, les chercheurs scientifiques travaillent sur des technologies de substitution tels que les ordinateurs quantiques, optiques et à ADN.
Loi de puissance : cette loi indique qu’une variable n’a pas de taille caractéristique : par conséquent, des événements de toute taille peuvent survenir. Les lois de puissance sont dites invariantes d’échelle et s’observent le plus souvent lors des transitions de phases.
Machine de Turing : machine abstraite et idéale, à l’origine des fondements théoriques de l’informatique. Elle décrit et formalise le principe de fonctionnement de l’ordinateur et de l’algorithme, c’est-à-dire la séquence d’instructions aboutissant à la résolution d’un problème de calcul. Ce dispositif imaginaire porte le nom du logicien britannique Alan Turing (1912-1954), qui l’a introduit dans un article historique paru en 1936, « On Computable Numbers, with an Application to the Entscheidungsproblem » (Proceedings of the London Mathematical Society, série 2, vol. 42, 1936-1937, pp. 230-265) qui constitue l’un des écrits mathématiques les plus importants sur la théorie de la calculabilité. La machine de Turing est une « machine à écrire » modifiée qui dispose d’une tête de lecture et d’un ruban infini divisé en cases qui est en quelque sorte sa mémoire. La tête de lecture a un nombre fini d’états, elle peut se déplacer d’une case à une autre, à gauche comme à droite, et peut lire, écrire et effacer des symboles inscrits sur ces cases. Turing l’a conceptualisée pour démontrer qu’un automate programmé de la sorte pouvait résoudre n’importe quel problème calculable. Tout problème est dit calculable s’il peut être calculé par une machine de Turing.
Mandelbrot, Benoît, mathématicien français d’origine polonaise, a conceptualisé au début des années soixante la géométrie fractale, qui s’est révélée étroitement liée à la théorie du chaos déterministe. Mandelbrot est l’inventeur du néologisme « fractal » qu’il a créé à partir d’une racine latine, fractus, signifiant « brisé », de frangere : « casser, briser ».
Mouvement brownien : correspond au mouvement erratique de particules microscopiques dans un fluide, il porte le nom du botaniste britannique Robert Brown (1773-1858) qui observa en 1828 que des grains de pollen en suspension dans l’eau étaient en proie à un mouvement désordonné. Le mouvement brownien, qui traduit en fait l’agitation thermique des atomes et des molécules, a été étudié par Albert Einstein en 1905 puis par le physicien français Jean Perrin qui le décrivit en 1913 dans son livre Les Atomes. Il sera mathématiquement conceptualisé en 1923 par le mathématicien américain Norbert Wiener afin d’étudier d’autres processus physiques aléatoires.
Optimisation combinatoire, approche issue de la théorie de la complexité et de l’informatique théorique, regroupe un ensemble de techniques de résolution de problèmes de calcul très ardus. L’optimisation combinatoire cherche à trouver au moyen de divers types d’algorithmes la solution optimale parmi un nombre fini de choix, elle permet de modéliser des problèmes de décision soumis à des contraintes (logistique, planning, gestion de production, transport, etc.). Le problème du voyageur de commerce est un problème typique d’optimisation combinatoire.
Paysage évolutif ou adaptatif (traduction de l’expression fitness landscape) : métaphore mathématique introduite en 1931 par le biologiste Sewall Wright (1889-1988) pour visualiser la dynamique évolutive d’un ou plusieurs organismes. Le paysage évolutif est une cartographie d’un espace où à chaque point de l’espace correspond un nombre qui définit un niveau d’aptitude. La surface de ce paysage peut être ainsi plus ou moins « rugueuse », parsemée de « pics adaptatifs » que séparent des « vallées ». Aux plus hauts sommets de ce paysage correspond la meilleure aptitude. Entre les sommets, les organismes errent, soumis aux contraintes de la contingence et de la sélection. La modélisation mathématique du paysage évolutif développée par Stuart Kauffman est maintenant utilisée dans diverses disciplines et activités de recherche (biologie théorique, physique de la turbulence, chimie, algorithmes génétiques, optimalisation combinatoire, etc.) pour décrire de manière plus intuitive des problèmes complexes impliquant un processus de sélection.
Principe d’incertitude, énoncé en 1925 par le physicien allemand Werner Heisenberg (1901-1976), postule qu’on ne peut mesurer précisément et simultanément la position et la vitesse d’une particule subatomique. Selon ce principe essentiel de la théorie quantique, du fait des échelles et des fluctuations du monde microscopique, on ne peut connaître avec exactitude que l’une ou l’autre de ces deux grandeurs physiques. La position et la vitesse sont mathématiquement liées de façon inversement proportionnelle : plus grande est la précision pour l’une, plus grande est l’imprécision pour l’autre.
Problèmes de croissance : phénomènes associés à la formation macroscopique d’une variété de motifs de la matière tels que la formation des dunes de sable, des fractures caractéristiques d’un sol argileux asséché, des bancs de corail, des colonies bactériennes, du givre sur une vitre, des flocons de neige, etc. Engendrés au cours de processus évolutifs, épidémiques, de gel, de percolation ou de cristallisation, ces divers phénomènes physiques et chimiques de croissance sont actuellement étudiés au travers d’un même éclairage mathématique. On a ainsi recours à des modèles informatiques – comme celui de l’agrégation limitée par diffusion (DLA, Diffusion Limited Agregation) – qui permettent de représenter ces phénomènes de croissance par le biais d’une simulation révélant la formation de structures ramifiées à géométrie fractale. Le modèle de croissance fractale de type DLA reproduit un processus de collage de particules identiques ou d’amas de particules pour étudier la formation de dendrites que l’on retrouve, entre autres, dans les structures neuronales ou les décharges électriques. Le principe de ces croissances numériques consiste à abstraire le processus physique à l’œuvre dans toutes sortes de phénomènes pour mieux comprendre l’universalité de ses propriétés.
Rasoir d’Occam : principe philosophique médiéval qui porte le nom du théologien anglais Guillaume d’Occam, ou d’Ockham (1290-1349) qui l’a formulé. Ce principe dit que « la pluralité ne doit être envisagée qu’en cas de nécessité » (pluralitas non est ponenda sine neccessitate). Les scientifiques y ont souvent recours pour rappeler qu’en présence de plusieurs théories décrivant une même réalité, la plus simple est préférable. Le rasoir d’Occam est désigné sous diverses appellations, telles que le principe de simplicité, le principe d’économie ou la loi de parcimonie.
Réaction chimique de Belouzof-Zhabotinsky : un des exemples les plus typiques de structures dissipatives, c’est-à-dire de structures subissant des variations au cours du temps. Cette réaction, qui porte le nom de deux scientifiques russes l’ayant observée au cours des années 1950 et 1960, fut la première manifestation d’auto-organisation en chimie. Elle demeura pourtant longtemps ignorée par les chimistes du monde entier car leur discipline traitait essentiellement de réactions chimiques dont les produits procèdent d’une évolution stable et monotone. Ce n’est qu’au début des années 1970 que les scientifiques se mirent à s’intéresser aux motifs spatio-temporels de cette réaction chimique. Ces motifs ont été étudiés par simulation informatique, notamment en recourant aux automates cellulaires, et on s’est rendu compte qu’ils rappellent étonnamment ceux de plusieurs phénomènes biologiques, comme les structures dissipatives mises en évidence dans un milieu d’amibes (Dictyostelium discoideum) ayant la particularité d’être à la fois unicellulaire et pluricellulaire au cours de leur cycle de vie ou l’activité des cellules cardiaques, qui oscillent de manière indépendante les unes des autres lors de la fibrillation (désynchronisation du rythme cardiaque pouvant conduire à la mort). Ces divers phénomènes physico-chimiques ont en commun non pas les composants mais la dynamique de leurs interactions.
Reine rouge : métaphore proposée en 1973 par le biologiste évolutionniste américain Leigh Van Valen pour éclairer la coévolution complexe où chaque organisme participe au contexte évolutif d’autres organismes, le paysage évolutif allant de la sorte vers une complexité croissante. Toute espèce qui cesse cette course évolutive perpétuelle est condamnée à l’extinction selon le principe qu’il faut courir juste pour se maintenir à la même place. Cette image métaphorique fait référence au livre de Lewis Carroll, Alice au pays des merveilles, où, « de l’autre côté du miroir », la Reine rouge tire Alice par la main et la fait courir sans cesse tandis que le paysage reste immobile. La Reine rouge explique qu’« ici, il faut courir aussi vite que tu peux pour rester à la même place. Si tu veux te déplacer, tu dois courir au moins deux fois plus vite ».
Réseaux d’automates booléens : ensembles d’automates qui, connectés de façon aléatoire, génèrent des comportements collectifs particuliers.
Réseaux de spins : modèles simplifiés de la physique décrivant le comportement désordonné de minuscules aimants, ils sont utilisés de façon multidisciplinaire.
Réseau génétique régulateur : théorie élaborée par le biologiste Stuart Kauffman qui propose un schéma d’explication de la différenciation cellulaire. Il s’agit de comprendre comment les différents types de cellules nécessaires à un organisme (256 cellules distinctes dans le cas de l’homme) peuvent être générés à partir d’un même génome. En effet, lors de la différenciation cellulaire, l’ensemble des gènes activés n’est pas le même selon que cet ensemble spécifie une cellule musculaire, une cellule cardiaque ou un neurone. La simulation de Kauffman, basée sur un réseau d’automates booléens où l’activité des gènes est modélisée de façon binaire (chaque gène étant actif ou inactif), montre que le système stabilise en fait un certain nombre d’attracteurs correspondant aux différentes cellules définies par le programme génétique. Kauffman avait estimé que dans le cas d’un réseau génétique de 100’000 gènes (estimation, à l’époque – 1993 – de la taille du génome humain), il y aurait théoriquement 2100 000 configurations cellulaires possibles. Ce chiffre inconcevable montre que la nature procède autrement pour déterminer un nombre limité de types distincts de cellules. Kauffman a calculé que le nombre d’attracteurs ou de cellules stabilisés croît en fonction de la racine carrée du nombre total de gènes : soit, pour un réseau de 100 000 gènes, 317 attracteurs ou cellules. Ce résultat produit par le réseau génétique simplifié de Kauffman est relativement proche des 256 cellules humaines.
Riemann, Bernhard (1826-1866), mathématicien allemand, fut l’un des premiers, avec le mathématicien russe Nikolaï Lobatchevski (1792-1856), à développer des géométries non euclidiennes, c’est-à-dire des surfaces courbes où la somme des angles n’est pas égale à 180° et où le cinquième postulat d’Euclide (qui dit que deux droites parallèles ne se croisent jamais) n’est pas vérifié. Cette découverte, dans le dernier quart du XIXe siècle, de l’existence de géométries non euclidiennes a conduit à une crise conceptuelle comparable à la découverte de la théorie du chaos déterministe un siècle plus tard. La géométrie de Riemann, elliptique quand celle de Lobatchevski est hyperbolique, étudie des espaces courbes avec un nombre variable de dimensions ; elle a eu une influence déterminante dans la physique théorique et plus particulièrement dans la théorie de la relativité générale et la description de l’espace-temps.
Symétrie : cette notion renvoie soit aux structures symétriques que la sélection naturelle aurait favorisées pour des raisons de stabilité et de permanence, soit aux propriétés d’invariance d’un objet, d’un système ou d’une théorie soumis à une transformation (par exemple, une sphère présente une symétrie de rotation : elle reste inchangée lorsqu’elle tourne sur elle-même). La notion de symétrie est de plus en plus utilisée, parfois même en lieu et place du concept de loi, et elle est en général couplée à la notion de brisure de symétrie (ainsi le big bang est-il une brisure de symétrie parce que l’explosion primordiale correspond à une singularité absolue). La symétrie tend à désigner des propriétés physiques de régularité, d’invariance, de conservation, d’équivalence, tandis que la brisure de symétrie désignerait des phénomènes naturels de complexité, de singularité, de criticalité et d’instabilité. Symétrie et brisure de symétrie sont des catégories qui permettent à une théorie scientifique d’accéder à l’intelligibilité du réel et, mises en couple, signalent une richesse dialectique comparable à celle des catégories fini/infini, discret/continu, local/global.
Somme de Feynman, du nom du physicien américain (1918-1988), prix Nobel 1965, qui l’a formulée, elle est un procédé de la théorie quantique qui permet d’envisager tous les chemins possibles qu’une particule peut emprunter pour aller d’un point à un autre.
Tabula rasa : notion philosophique définie, entre autres, par le philosophe empiriste anglais John Locke (1632-1704) pour désigner l’esprit et l’acquisition d’expérience et de savoir. Selon Locke, l’esprit d’un enfant est une tabula rasa (ou tableau blanc) sur laquelle s’inscrivent au fur et à mesure toutes ses expériences cognitives. Cette idée fut avancée pour s’opposer à l’idée du caractère inné de la connaissance défendue par d’autres philosophes.
Théorie des cordes : domaine récent de la physique théorique où les objets fondamentaux sont des cordes extrêmement petites, de l’ordre de la longueur de Planck (10–20, soit cent milliards de milliards de fois plus petites qu’un noyau d’hydrogène), dont le mode de vibration serait à l’origine des différentes particules de la matière. À chaque mode de vibration correspondraient la masse et la charge d’une particule subatomique. Cette théorie ambitionne d’unifier la théorie quantique et la relativité générale, mais de l’avis de tous les chercheurs qui y travaillent, il faudrait plusieurs dizaines d’années pour développer les mathématiques hautement complexes qui la régiraient.
Théorème de l’incomplétude, formulé en 1931 par le logicien et mathématicien autrichien Kurt Gödel (1906-1978), il énonce que si un système formel contenant l’arithmétique élémentaire est supposé consistant – c’est-à-dire qu’une assertion et son opposé ne peuvent être démontrées en même temps –, alors il est incomplet – c’est-à-dire qu’une assertion ne peut être prouvée vraie ou fausse.
Théorie algorithmique de l’information : développée dans les années soixante, cette théorie, dont Gregory Chaitin fut l’un des artisans avec les mathématiciens Kolmogorov et Solomonoff, détermine le degré de complexité d’un objet ou d’un énoncé mathématique en mesurant la quantité minimale d’information nécessaire pour générer cet objet ou cet énoncé mathématique. À partir de ce principe général, cette approche théorique s’est intéressée à la compression d’information et aux problèmes de calculs réalisables ou non en science informatique. Elle a par la suite été généralisée à la mesure du contenu d’information des systèmes logiques formels, c’est-à-dire des ensembles d’axiomes et des théorèmes. Dans cette perspective, les théories scientifiques elles-mêmes sont considérées comme des algorithmes et des compressions d’information permettant de décrire la complexité des phénomènes naturels. La théorie algorithmique de l’information est ainsi devenue, en l’espace de trois décennies, un outil de mesure universel de la complexité.
Thermodynamique : science qui étudie les systèmes physiques soumis à des variations de température, d’énergie (chaleur et travail) et d’entropie (mesure du degré de désordre du système). Le premier principe de la thermodynamique postule la conserva- tion de l’énergie tandis que le second principe affirme que tout système évolue au cours du temps vers un désordre croissant correspondant à l’état d’équilibre final du système. On dit alors que son entropie est maximale.
Voyageur de commerce : le problème est vite formulé et pratiquement impossible à résoudre. Un voyageur de commerce doit visiter n villes ; connaissant les distances entre les différentes villes, il doit déterminer l’itinéraire optimal (en termes de coût de carburant), c’est-à-dire la distance minimale qu’il lui faut parcourir pour visiter toutes les villes. S’il s’agit d’examiner les itinéraires un par un, le temps de résolution peut devenir rapidement astronomique, car il croît exponentiellement avec la taille du problème (au fur et à mesure que le nombre n de villes augmente). Pour100 villes, le calcul de factorisation prendrait des milliards d’années ! Le problème du voyageur de commerce est un cas d’école du calcul par « optimisation combinatoire » où il s’agit de développer des approximations satisfaisantes par rapport à la taille et la complexité des problèmes posés.
Weierstrass, Karl (1815-1897), mathématicien allemand, a montré en 1872 que certaines fonctions décrivant une courbe continue, sans tangente et non dérivable avaient une propriété d’auto-similarité. Les courbes de Weierstrass, Koch et Peano, l’ensemble de Cantor furent, au moment de leur apparition, perçus comme des « cas pathologiques » alors qu’ils constituent les premiers développements des mathématiques fractales.
Extrait de Réda Benkirane, La Complexité, vertiges et promesses. Histoires de sciences. Nouvelle édition, Benguerir, UM6P-Press, 2023.