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Chapter 1

Setting the Stage

“I believe in Spinoza’s God who reveals himself in the orderly harmony of
what exists, not in a God who concerns himself with fates and actions of
human beings.” —Einstein

The author of this book had the privilege of growing up in post World War II Man-
hattan, on the East Side a block away from Central Park and the Frick Museum. There
he took advantage of the excellent public libraries, where he read many essays writ-
ten by refugees from Hitler’s Europe: Albert Einstein, John von Neumann, Stanislaw
Ulam, Hermann Weyl, Max Born, George Polya, Mark Kac, Gian-Carlo Rota. .. These
were physicists and mathematicians of vast culture, including philosophy and the arts.
And the essays by Einstein featured frequent references to God, which rubbed off on a
impressionable, young and mostly self-taught student.

Thanks to the Cold War, the author also benefited from many special educative
programs for bright teenagers interested in science and mathematics. The Americans
were scared of the Russians, who had placed the first artificial satellites in orbit. He
went to an excellent school called the Bronx High School of Science, and also to a spe-
cial weekend program for high school students called the Columbia University Science
Honors Program.

At Columbia University he took computer programming courses and was able to
run computer programs in FORTRAN and symbolic assembly languages on diverse
mainframes. Furthermore, he had the run of the Columbia University libraries, includ-
ing, amazingly enough, access to the stacks where he found many historical volumes
including two collected works, the Opera Omnia of Leonhard Euler and the Oeuvres
Complétes of Neils Henrick Abel, great mathematicians both.

It was there in Manhattan in 1958 at the New York Public library, the Donnell
branch across the street from the Museum of Modern Art, that an eleven-year old boy
encountered a little book that was to send him on a life-long quest: Gddel’s Proof by
Ernest Nagel and James R. Newman. The memorable first page of Gadel’s Proof is
displayed below.
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|

Introduction

In 1931 there appeared in a German scientific peri-
odical a relatively short paper with the forbidding title
“Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme” (“On Formally
Undecidable Propositions of Principia Mathematica
and Related Systems™), Its author was Kurt Godel,
then a young mathematician of 25 at the University of
Vienna and since 1938 a permanent member of the In-
stitute for Advanced Study at Princeton. The paper is
a milestone in the history of logic and mathematics.
When Harvard University awarded Gédel an honor-
ary degree in 1952, the citation described the work as
one of the most important advances in logic in modern
times.

At the time of its appearance, however, neither the
title of Godel’s paper nor its content was intelligible to
most mathematicians. The Principia Mathematica
mentioned in the title is the monumental three-vol-
ume treatise by Alfred North Whitehead and Bertrand
Russell on mathematical logic and the foundations of

3

Godel’s Proof, 1958
(Photo courtesy of https://archive.org)

The book you are reading was written by someone who is, of course, now much older
than eleven telling about the ideas that inspired him and the landmarks he encountered
while on this quest to understand the incompleteness phenomenon discovered by Kurt
Godel, the tip of a very large and mostly submerged iceberg.

The author begs the reader’s indulgence for the frequent references to God, perhaps
a metaphor, or perhaps more than that, which is for each reader to decide. ..

Let us begin by asking just what makes mathematics so special.



Chapter 2

Why Mathematics?

Quartz Crystals

(Quartz Brésil par Didier Descouens)
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Crystals hint at the deep mathematical structure of
reality

*** The Platonic World of Mathematical Ideas is
Static, Perfect and Eternal ***

According to Plato, the rest is doza, opinion. Doxa was contrasted with episteme
(“knowledge”). Furthermore the sign on the door of Plato’s Academy said,

“Let no one ignorant of geometry enter here.”

And remember that the old name for “mathematician” was “geometer.”

In math we think like the Gods

Example: There are infinitely many prime numbers

Let us give a beautiful example of the power of pure thought, a proof that there are
infinitely many prime numbers. A prime is, of course, a positive integer # 1 that has
no proper divisors, only itself and 1. Our proof is taken from Euclid’s Alexandrian
compendium of classical Greek mathematics, and it is what is called a reductio ad
absurdum, a reduction to an absurdity.

Suppose on the contrary that there are only finite many prime numbers. Multiply
all of them together and add one, giving us the number M. M isn’t exactly divisible
by any of those primes because it always leaves the remainder 1. Hence M must itself
be a prime, contradiction!

As G. H. Hardy remarks in A Mathematician’s Apology after presenting this exam-
ple, in chess one may sacrifice a piece, but in mathematics one offers the game.

Euclid’s proof is delightfully simple, and much is known about the prime numbers.
However some equally simple questions have absorbed lifetimes of fruitless efforts. Here
is an example.

Perfect, Deficient and Abundant Numbers

6 is divisible by 1, 2 and 3 which sums to 6, and is therefore perfect. 8 is divisible by
1, 2 and 4 which sums to 7, and is therefore deficient. And 12 is divisible by 1, 2, 3, 4
and 6 which sums to 16, and is therefore abundant.

The next perfect number is 28 which is divisible by 1, 2, 4, 7 and 14 which sums to
28.

Are there infinitely many even perfect numbers? Are there any odd perfect numbers?
Amazingly enough, nobody seems to know. Our current mathematical tools cannot
answer such questions.

There are also what are called amicable pairs, in which each number is the sum of
the proper divisors of the other. 220 and 284 are an example of an amicable pair. And
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perhaps there are even amicable rings. Euler, whom we shall talk about in Chapter 10,
was good at finding examples of such things.

This is Plato’s static world of hard, perfect, eternal truths, of such concern to
ancient Greek intellectuals. It is not an easy world to navigate in. But to them and
even to some modern mathematicians it has a cold, austere, inhuman, and other-worldly
beauty, illuminated by the tremendously intense, even savage, light of absolute truth.
Like the blinding, lethal light of the great god Apollo as he revealed himself to one of
his mortal lovers, at her very much mistaken request. Or like the god Krishna in the
Bhagavad Gita, whom the archer Arjuna begs to stop gradually assuming his divine
form because he was already “brighter than a thousand suns.”

Ontology: Is the world built out of mathematics? Is
God a mathematician?

To be continued in Chapter 11.

Literature

1. G. H. Hardy, A Mathematician’s Apology, Cambridge University Press, 1940, With
a foreword by C. P. Snow, 1967. [A portrait of a creative artist.]

2. E. T. Bell, Men of Mathematics: The Lives and Achievements of the Great Math-
ematicians from Zeno to Poincaré, Simon & Schuster, 1937. [Has inspired many
people to become mathematicians. |

3. J. R. Newman, The World of Mathematics, 4 volumes, Dover, 2000. [A fabulous
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Chapter 3

As if Summoned from the Void:

Cantor’s Theory of Infinite Sets,
1895, 1897

Georg Cantor

In one of his dialogues, Galileo notes that the positive integers and their squares
can be put into a one-to-one correspondence:

11,244, 39, 4416, 5+ 25,...

13
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But the squares constitute only a small fraction of the positive integers. Therefore,
Galileo says, there is no way to compare the sizes of infinite sets.

Actually the exact opposite is the case. The central idea of Cantor’s theory of infinite
sets is that two infinite sets have exactly the same cardinality, the same size, the same
number of elements, if there is a one-to-one correspondence between the elements of
both sets leaving nothing out.

And the second central idea of Cantor’s theory is that the set of all the subsets of
an infinite set is always more numerous, is a much bigger infinite set, than the original
set.

So start with the set of all positive integers {1,2,3,...}, take all the subsets of
that, then all the subsets of the resulting set, and so forth and so on, obtaining an
infinite sequence of bigger and bigger infinite sets. Then take the union of all of them,
producing an infinite set that is a whole lot bigger, and continue like this, onwards and
upwards, yearning for God, but never attaining Him.

Cantor’s ordinal and cardinal numbers

Furthermore, Cantor’s breathtaking conception includes two transfinite sequences of
new kinds of numbers, his ordinals and his cardinals. Here they are.
There is the series of ordinal numbers

0,1,2,...w,w+1lw+2,...2w2w+1,...w. . 6w +3w+T.. W W WL

until €q,

the smallest solution of

and beyond.!
And there is a corresponding series of cardinal numbers

NS U S S \PRRE N

. €0

one N, for each ordinal number .

Now let’s put these new numbers to a good use.

The set of all positive integers {1,2,3,...} has cardinality Xo. The set of all its
subsets has cardinality X;. Continuing like this, we drive past No, N3 ... until we take
the union of this infinite sequence of sets of subsets, which has cardinality N, and so
forth and so on, upwards and onwards, endlessly.

Von Neumann ordinals

Each ordinal can be thought of as the set of all smaller ordinals.? Thus 0

0={}

'Here we are using non-standard notation. I believe that 2w looks nicer than w2, and for our
purposes it makes no difference.

2This beautiful idea is not due to Cantor. It was a later contribution by John von Neumann, whom
we shall study in Chapter 7.
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is the empty set, 1 is
1={0} ={{ }},
2 is
2=A{0, 1} ={{}, {({ }}},
3 is
3=A{0,L2p={{} {{}} ({} {{}}}}

And
w=1{0,1,2,...},

w1=1{0,1,2,...,0} ={0,1,2,...,{0,1,2,.. }},
w+2={0,1,2,...,w,w+ 1},
2w={0,1,2,...,.w,w+Lw+2...}

And so forth and so on, forever and ever.

Cantor’s Diagonal Argument, 1895

I suppose that I must prove that the set of all the subsets of a set is bigger than the
original set, infinitely bigger. Let’s consider a special case that perfectly illustrates the
general idea, which is how does one prove that the set of all subsets of {1,2,3,...} is a
bigger infinite set than it is?

Following in Euclid’s footsteps, we employ a reductio ad absurdum.

Let’s suppose on the contrary that there is a one-to-one correspendence between
the positive integers and all its subsets, and ask yourself whether the subset that cor-
responds to n contains n or not. We construct a so-called diagonal set that contains n
if and only if the subset that corresponds to n doesn’t contain n.

This diagonal set must be a new subset of {1,2,3,...}, one that was not in our
original list. Think about it!

Therefore there can be no one-to-one correspondence between a set and the set of
all its subsets. C’est fini!

The paradoxes of set theory

The diagonal argument provides a lovely proof that the set of all the subsets of a set
is bigger than the original set. But apply this argument to the universal set, the set of
everything, and you get something bigger than everything, an impossibility.

Similarly, recall that von Neumann defines each ordinal as the set of all smaller
ordinals. Then the set of all ordinals Z is the biggest ordinal, but Z + 1 is an even
bigger ordinal! This is called the Burali-Forti paradox.

Cantor was not unduly perturbed by these paradoxes, because he was doing math-
ematical theology, and it is inherently paradoxical for a finite mind to attempt to
understand God, who is totally and completely infinite, in fact, beyond comprehension.

An irresolvable paradox may be okay in theology but it most certainly is not welcome
in pure mathematics. Here are two reactions to Cantor’s theory by famous mathemati-
cians:
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David Hilbert: “No one shall expel us from the paradise discovered by Can-
tor.”

Henri Poincaré: “Set theory is a disease from which future generations will
be happy to have recovered.”

The Zermelo-Fraenkel axiomatic formulation of set theory was designed to avoid
the paradoxes. But in my opinion it obscures Cantor’s essential contribution, which
was his discovery of the open-endedness of mathematical imagination. Cantor’s theory
in its original, unadulterated form argues against a static, perfect, eternal view of
mathematical truth and in favor of the idea that

*** The Platonic World of Mathematical Ideas is In
Statu Nascendi ***

Anyway, as we shall see in the next chapter, Hilbert then set out to put math on a
firm footing, to propose a way, he hoped, to eliminate paradoxes and restore absolute
certainty.

Literature
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. Paul J. Cohen, Set Theory and the Continuum Hypothesis, Dover, 2008.
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Chapter 4

David Hilbert’s Metamathematics,
c. 1900

David Hilbert

The 1900 International Congress of Mathematicians
in Paris

In 1900 Hilbert led the German delegation to Paris and delivered a stirring address,
seeking to set the tone for the mathematics of the new century. Here are two excerpts:

17
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Who of us would not be glad to lift the veil behind which the future lies
hidden; to cast a glance at the next advances of our science and at the secrets
of its development during future centuries? What particular goals will there
be toward which the leading mathematical spirits of coming generations
will strive? What new methods and new facts in the wide and rich field of
mathematical thought will the new centuries disclose?

This conviction of the solvability of every mathematical problem is a pow-
erful incentive to the worker. We hear within us the perpetual call: There
is the problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus.

This memorable speech remains the most forceful expression of the mathematical spirit
that has ever been uttered. It is full of Hilbert’s energy, enthusiasm and optimism, the
energy, enthusiasm and optimism of a great mathematician.

But there was a problem lurking in the background: the paradoxes of set theory,
other paradoxes, and controversies over the correct methods to employ in mathematical
proofs. Hilbert set out to restore stability and order to the world of mathematics, by
proposing what came to be known as the Hilbert program.

Hilbert’s Program to Restore Order and Stability to
Mathematics

Here was Hilbert’s proposal:

First of all, using mathematical logic, formulate a formal axiomatic theory for all of
mathematics, a TOE, Theory of Everything. This would employ an artificial language
with perfect syntax to eliminate ambiguities, and there should also be a mechanical
procedure to check if a proof satisfies the rules or not.

Second, convince the entire mathematical community to unite behind this TOE.

Result: absolute certainty would be restored!, a most laudable goal. Mathematical
truth would become completely objective, not subjective. It would be black or white,
never gray.

However, it was never Hilbert’s intention to force mathematicians to actually use
this TOE in their everyday research. Hilbert’s goals were philosophical, not practical.
In practice, mathematicians would continue as before, writing proofs in German or
French. ..

Metamathematics

Hilbert’s program for rescuing mathematics also creates a new field of mathematics,
called metamathematics, that studies formal axiomatic theories from the outside, from
above, employing mathematical methods, a psychiatric self-analysis, as it were.

Let us begin doing metamathematics.

The first step is to notice that one can enumerate all the theorems of a formal
axiomatic theory. You can run through the tree of all possible deductions from the
axioms, or you can apply the proof-checker to all possible strings of characters selected
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from the alphabet of the formal axiomatic theory. Either way, you get, very slowly, all
the theorems that can be demonstrated, in order of the size of the proofs, a process
that never comes to an end.!

Now suppose that you, a real life mathematician, are interested in determining
whether a certain assertion A is true or false. Well, if you are very, very patient, in
principle at least, you can just start enumerating all the theorems in your TOE until
you find a proof of A, or you find a proof of not A. That’s it, you’re done, absolutely
brainlessly, absolutely mechanically, at least in principle.

How likely do you think it is that this is possible? Not very. Perhaps it is preferable
for there not to be such a TOE, otherwise mathematicians will all be out of a job!

Of course, in practice this procedure cannot be carried out, it would be incredibly
slow. But in theory, such a TOE would trivialize mathematics, which may make you
suspect that it is not possible, not even in theory.

The great mathematician Henri Poincaré, who believed in intuition, not logic, mer-
cilessly criticized Hilbert’s formal axiomatic theories, comparing them to a gigantic
sausage machine. He missed the point, for the Hilbert program led to the creation of
digital computing machinery. Indeed, two mathematicians, John von Neumann and
Alan Turing, both inspired by Hilbert, respectively helped to create the computer in-
dustry in the U.S. and in the U.K.. But Poincaré was not entirely mistaken, for the
quest for absolute truth, for absolute certainty, proved remarkably elusive, as we shall
see in the next chapter, on Kurt Godel.

Literature

1. Constance Reid, Hilbert, Copernicus, 1996.

2. Newton C. A. da Costa, Francisco Antonio Doria, On Hilbert’s Sixzth Problem,
Synthese Library, Vol. 441, Springer, 2022. [One of the 23 problems that Hilbert
proposed in Paris: axiomatizing physics.|
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Chapter 5

Kurt Godel’s Incompleteness
Theorem, 1931

Kurt Godel

“Wir missen wissen, wir werden wissen!”—David Hilbert, 1930
We must know, we will know!

This was Hilbert’s rousing rallying cry for mathematicians, in what was practi-
cally his retirement address at a meeting for mathematicians. Meanwhile, in a satellite
event, the young Kurt Godel was announcing his incompleteness theorem to an uncom-
prehending audience. Only John von Neumann instantly understood.

Von Neumann could have proved Godel’s theorem himself, but it had never occurred
to him that Hilbert’s program could be flawed. Henceforth von Neumann was to support
Godel in every possible way.

21
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Godel, like the poet William Blake, was an unworldly figure.! But in his own world,
the world of ideas, he was daring, imaginative, and extremely competent. In this world,
however, he was far from being as sophisticated as von Neumann, a banker’s son.

It was von Neumann who managed to rescue Godel and his wife from wartime
Vienna. Von Neumann obtained a still neutral United States visa for them, whereupon
they traveled around the world to avoid the war zone and reach Princeton, New Jersey.

Later it was von Neumann who managed to get Godel a permanent appointment
at the Institute for Advanced Study, finally putting an end to years of short term
appointments that had to be periodically renewed and that made Godel nervous. This
boon proved to be a mixed blessing, however, as Godel subsequently felt less pressure
to publish and could devote himself exclusively to studying Leibniz.

His friend Karl Menger, during an TAS visit, encouraged Godel to work on his own
ideas instead of studying Leibniz’s. But Godel could not be dissuaded. In response
to Menger’s entreaties, he revealed his suspicions that some very important discoveries
by Leibniz had been suppressed by “forces inimical to human progress.” Menger was
naturally skeptical, but was surprised by the considerable bibliographic evidence of
anomalies that Godel had managed to assemble from the excellent Princeton University
libraries.

Rebecca Goldstein in her biography of Goédel tells a story, perhaps apocryphal, but
nevertheless worth repeating. In reply to a boring dinner companion who had described
at length his astrophysical discoveries, an annoyed Godel snapped, “I don’t believe in
empirical science, I only believe in a priori truths!”

In spite of the kantian terminology, this is platonism, pure platonism. Nevertheless
Godel and Einstein were close friends. Einstein, an empiricist, and Godel, a platonist,
were often seen walking together through the streets of Princeton, intensely convers-
ing in German. But perhaps some of Einstein’s beliefs did rub off on Godel, though
transposed into platonist garb.

Here is a very important statement by Godel that has a distinctly quasi-empirical
air.?

“Furthermore, however, even disregarding the intrinsic necessity of some
new axiom, and even in case it had no intrinsic necessity at all, a decision
about its truth is possible also in another way, namely, inductively by study-
ing its “success,” that is, its fruitfulness in consequences and in particular in
“verifiable” consequences, i.e., consequences demonstrable without the new
axiom, whose proofs by means of the new axiom, however, are considerably
simpler and easier to discover, and make it possible to condense into one
proof many different proofs. The axioms for the system of real numbers,
rejected by the intuitionists, have in this sense been verified to some extent
owing to the fact that analytical number theory frequently allows us to prove
number theoretical theorems which can subsequently be verified by elemen-
tary methods. A much higher degree of verification than that, however, is
conceivable. There might exist axioms so abundant in their verifiable con-
sequences, shedding so much light upon a whole discipline, and furnishing

'But not as unworldly as is usually thought. In his youth he had frequented night clubs in Vienna,
and at Princeton he would take the trouble to travel to New York City for musical comedies.
2Please see the end of Chapter 8 for more on quasi-empiricism in mathematics.
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such powerful methods for solving given problems (and even solving them,
as far as that is possible, in a constructivistic way) that quite irrespective of
their intrinsic necessity they would have to be assumed at least in the same
sense as any well established physical theory.”—Godel, “What is Cantor’s
Continuum Problem?.” 1947

This is drawn from a discussion of the need for new axioms in set theory, a subject
that is much more intimidating than the relatively pedestrian version that I presented
in the chapter on Cantor. In fact, set theory is a thorny, challenging subject for only
the most brilliant, most adventurous mathematical minds.

Just to reinforce the message, here is Godel’s other fundamental text on quasi-
empiricism, from a 1944 festschrift in honor of Bertrand Russell.

“The analogy between mathematics and a natural science is enlarged upon
by Russell also in another respect (in one of his earlier writings). He com-
pares the axioms of logic and mathematics with the laws of nature and
logical evidence with sense perception, so that the axioms need not neces-
sarily be evident in themselves, but rather their justification lies (exactly
as in physics) in the fact that they make it possible for these “sense per-
ceptions” to be deduced; which of course would not exclude that they also
have a kind of intrinsic plausibility similar to that in physics. I think that
(provided “evidence” is understood in a sufficiently strict sense) this view
has been largely justified by subsequent developments, and it is to be ex-
pected that it will be still more so in the future. It has turned out that
(under the assumption that modern mathematics is consistent) the solution
of certain arithmetical problems requires the use of assumptions essentially
transcending arithmetic, i.e., the domain of the kind of elementary indis-
putable evidence that may be most fittingly compared with sense perception.
Furthermore it seems likely that for deciding certain questions of abstract
set theory and even for certain related questions of the theory of real num-
bers new axioms based on some hitherto unknown idea will be necessary.
Perhaps also the apparently unsurmountable difficulties which some other
mathematical problems have been presenting for many years are due to the
fact that the necessary axioms have not yet been found. Of course, under
these circumstances mathematics may lose a good deal of its “absolute cer-
tainty;” but, under the influence of the modern criticism of the foundations,
this has already happened to a large extent. There is some resemblance
between this conception of Russell and Hilbert’s “supplementing the data
of mathematical intuition” by such axioms as, e.g., the law of excluded
middle which are not given by intuition according to Hilbert’s view; the
borderline however between data and assumptions would seem to lie in dif-
ferent places according to whether we follow Hilbert or Russell.”—Gadel,
“Russell’s Mathematical Logic,” 1944

In line with these remarks by Godel, the set theory community has in fact in recent
years decided to add a powerful new axiom, Projective Determinacy, that is not at all
self-evident.

After this, it may seem like an anticlimax to turn to Godel’s proof of his incom-
pleteness theorem. The basic idea is extremely simple.
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“This statement is unprovable!” is true if and only if
it is unprovable!

The technical complications reside in expressing this as an arithmetical statement within
what is called Peano arithmetic, the standard formal axiomatic formulation of the non-
negative integers with addition, multiplication and equality.

At any rate, the consequences for the Hilbert program are devastating.

Therefore there is no TOE for pure mathematics.

Therefore mathematics does not provide absolute
certainty.

As we ponder this unexpected turn of affairs, perhaps a few criticisms are nevertheless
in order.

Godel’s proof is much too complicated and much too clever. When you find the
correct, the natural context for thinking about a problem, the proof becomes almost
obvious. As an example of this, Alexandre Grothendieck neglected to publish a proof of
an important theorem because it was une astuce, a trick. On the other hand, according
to J. E. Littlewood, A Mathematician’s Miscellany, a mathematician is known for the
number of bad proofs that he or she has published, because pioneering work is difficult.

Godel’s proof also leaves open the question of

How often are mathematical truths unprovable?

And does incompleteness apply to less artificial questions, to problems that mathemati-
cians really care about? Yes, there is in fact one, only one, good example of this:

Only non-artificial example: Cantor’s continuum hy-
pothesis is independent of abstract axiomatic set the-
ory (Kurt Goédel, Paul Cohen)
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Chapter 6

Alan Turing’s Halting Problem,
1936

Alan Turing

General, Mechanical procedure = algorithm

Turing’s 1936 paper features the idea of a universal Turing machine, which can be pro-
grammed to carry out any algorithm. It thus, in a sense, anticipates modern computer
technology, at least as a mathematical idea, one that still would require a great deal of
engineering ingenuity to actually implement.

But this was not at all Turing’s original goal. His goal was to advance Hilbert’s
metamathematical research program and to provide an entirely different proof of in-

27
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completeness, totally unlike the one in Godel’s 1931 paper. He did this by asking the
following seemingly trivial but actually extremely profound question:

Is there a general procedure for determining whether
a self-contained computer program goes on forever or
whether it eventually stops?

Assuming the computer has unlimited storage and time, of course. This is a conceptual
problem, not a practical one.

No! Proof: Apply Cantor’s diagonal argument to the
computable real numbers

In a nutshell, the idea of Turing’s proof of the undecidability of the halting problem
is as follows: Whether the Nth computer program ever outputs an Nth digit cannot
be mechanically decided, because otherwise you could compute an uncomputable real
number. Instead of explaining this in more detail, I prefer to give a more modern proof.

A more modern program-size proof

We anticipate here the study of program-size complexity in Chapters 8 and 9. Fix the
computer programming language, and measure the size of programs in characters of
code.

Assume on the contrary that there is an algorithm to decide whether or not a self-
contained computer program ever halts. Given the positive integer N, we apply this
algorithm to all programs up to N characters in size, and find all of the programs that
halt. Then we run all of them until they halt, and combine all of their outputs into
one big output. The program to do all of this can be written in the same programming
language, and it is only log;, IV + ¢ characters long. But

logigN+¢c < N

for all sufficiently large N, a contradiction, because our log,, N + ¢ characters long
program is too small to be able to produce the immense output that it does.

Very well, the halting problem is algorithmically unsolvable. But how does this
furnish us with a deeper proof of incompleteness? Well, all you have to do is to realize
that
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The Set of All Theorems Provable in a Formal Ax-
iomatic Theory Can be Mechanically Enumerated
(Very, Very Slowly)

As Turing notes in his 1936 paper, given any formal axiomatic theory T a la Hilbert,
there is always an algorithm to run through all possible proofs and find all the theorems,
an endless computation, completely mechanically.

Therefore Uncomputability implies Incompleteness

Because, if we assume that T has the property that you can only prove that a program
p halts or that p fails to halt if this is actually the case, and we also assume that T
always enables one to decide, then we could obtain an algorithm to resolve the halting
problem by running through all possible proofs in T" until we either find a proof that p
halts or a proof that p never halts, which is impossible, because no such algorithm can
exist.

Voila, a new proof of incompleteness! But it is a little strange. Godel constructs a
true arithmetical assertion that is unprovable within Peano arithmetic, but who ever
heard of the halting problem? Nobody before 1936. Fortunately, it is possible to
convert the halting problem into a question about diophantine equations, which go
back to Diophantus of Alexandria.

Hilbert’s 10th Problem: arithmetic versions of the
halting problem

A diophantine equation is one that has integer constant coefficients, positive integer

constant exponents, and one or more variables that are non-negative integers. It is

built up using only multiplications and additions and subtractions, in any which way,

but algebraic expressions are often collected into a polynomial such as 3x% + 7x + 2.
Here is an example of a diophantine equation:

$2+y2222

has the solution z = 3,y = 4, z = 5 because
324+4*=9+16 =25 = 5%

In contrast, the equation
24P =P
has no non-negative integer solutions, except for trivial ones with xyz = 0. This is a
special case of Pierre de Fermat’s famous last theorem, whose original proof has been
lost, but which was recently demonstrated in full generality by Andrew Wiles using
techniques that Fermat could not possibly have employed.
Diophantine equations have been studied since Diophantus of Alexandria two mil-
lennia ago. They have a long history, and a high pedigree in the world of pure math-
ematics. In contrast the halting problem dates from 1936, and feels rather like a new
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boy at school struggling to be accepted by his classmates. Fortunately it turns out that
there is an intimate connection between the halting problem and diophantine equations.

It turns out that the halting problem is equivalent to asking whether or not a dio-
phantine equation has a solution. It is not just about computer programs. This was
how it was shown that there is no algorithm to determine whether or nor a diophan-
tine equation has a solution, which was the tenth problem in Hilbert’s famous list of
23 challenges for the new century that he presented at the International Congress of
Mathematicians in Paris in the year 1900. Hilbert did not anticipate a negative solu-
tion; he asked for an algorithm to determine whether or not a diophantine equation can
be solved.

This equivalence between solving the halting problem and determining whether a
diophantine equation can be solved was demonstrated by Yuri Matijasevic based on
previous work by Julia Robinson, Hilary Putnam and Martin Davis.

Matijasevic constructed a diophantine equation with the parameter k£ and many
additional variables which has an infinite number of solutions if the kth computer
program halts and which has no solution if the k&th computer program never halts.

The missing piece of the puzzle that had eluded Julia Robinson, Hilary Putnam and
Martin Davis turned out to be a simple property of the Fibonacci numbers. Matijasevic
was 22 at the time, as Newton described his similar experience, “in the prime of my
age for invention.”

Turing Oracles, 1938

But the halting problem was not Turing’s only significant contribution to pure mathe-
matics and to mathematical philosophy. In 1938, he came up with another important
idea.

Turing’s magnificent conception in his 1938 paper on oracles is of a transfinite
hierarchy of increasingly powerful oracles O, one for each constructive ordinal a. I
shall not attempt to define a constructive ordinal here precisely; roughly speaking, it
is one that has a name and can reached in the limit from below via a computable
fundamental sequence. Here are some examples of such sequences:

ww+lw+2,... = 2w

w, 2w, 3w, ... = w?

ww? Wi W
w o wY

w,w”, W ... = €

These are examples of limit ordinals. Successor ordinals like o+ 1 are constructive if «
is.

Anyway, it is intuitively clear that the ordinals through €y are constructive ordinals,
and furthermore they have rather convenient names.!

! Afterwards things become more complicated, because one has to keep inventing new names, new
notations, forever and ever, an inherently creative, open-ended task. .. This is explained rather well in
the book by John Stillwell in the literature section of Chapter 3 on Cantor.
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Recall that each ordinal 5 may be conceived as the set of all ordinals « less than .
Similarly, the oracle Og works as follows. A computer program p can give the oracle
Op two pieces of information:

1. The name of an ordinal « that is less than 3, and
2. the program p’ that will be given access to the oracle O,.

The oracle O then solves the halting problem for p’, it tells p whether or not p’ halts
when run with access to the oracle O,. p can then proceed to use this information
about p’ in any way that it cares to.

Thus Turing oracles Og become increasingly powerful as 8 increases, because they
can solve the halting problem for all programs having access to less powerful oracles
O, with o < 3.

Turing on Machine Intelligence

After World War II, Turing’s life gradually began to crumble. But he was able to
produce yet another classic, a memorable publication on artificial intelligence. Most
unfortunately the U.K. did not take advantage of Turing’s genius. Indeed, they perse-
cuted him.

Nevertheless, in 1950 Turing published “Computing Machinery and Intelligence” in
the journal Mind, which has been an inspiration for all of us who wonder if machines
will replace human beings. Hopefully not! But Turing clearly thought, and perhaps
even hoped, that this might be the case. Considering what he went through, it is
understandable.
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Chapter 7

John von Neumann on Natural and
Artificial Software, 1948, 1951

John von Neumann
(Photo courtesy of Los Alamos National Laboratory.)

Turing’s Work on Morphogenesis was a mistake

At the end of his troubled life, Turing used nonlinear partial differential equations to
generate biological patterns, but evo-devo (evolutionary developmental biology) teaches
us that pattern generation is actually algorithmic via DNA software.

Von Neumann realized that Turing’s work was fundamental to biology, but Turing
himself failed to do so.
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We have already encountered von Neumann twice, in the beautiful von Neumann
ordinals, and in the story of how he would help Godel whenever he could. Let me tell
you more about this extraordinary mind.

A child prodigy, von Neumann was a polymath who worked in many different areas.
I loved his book, written with Oskar Morgenstern, Theory of Games and Economic
Behavior. And in Mathematical Foundations of Quantum Mechanics, von Neumann
provided the Hilbert space formulation for quantum mechanics, named in honor of his
teacher, David Hilbert.

In fact, it seemed to me as a young student that von Neumann was perfectly capable
of creating a new field of mathematics every morning before breakfast. I was determined
to give it a shot myself!

Von Neumann was instrumental in creating the computer industry in the U.S. via
a series of extremely influential reports coauthored with Herman Goldstein and Arthur
Burks. He also had a computer built in the basement of the Princeton Institute for
Advanced Study, used for secret hydrogen bomb detonation calculations, and widely
copied (the so-called von Neumann architecture). Turing was equally influential in
the U.K., first with a special-purpose computer for cryptography, then with a general-
purpose computer, MADAM, the Manchester Automatic Digital Machine.

Furthermore, in a remarkable 1948 talk and 1951 paper, von Neumann predicts
DNA, the software of life, an amazing mathematical prophecy. In an Imre Lakatos
“rational reconstruction” this little-known paper would have jump-started molecular
biology.

In the event, the young physicists who, disgusted by nuclear weapons, aban-
doned physics to study viruses, the hydrogen atom of biology, were inspired by Erwin
Schrodinger’s book What Is Life?, not by von Neumann’s more perceptive paper that
realized that the essential new idea needed to understand biology was the idea of soft-
ware, as presented for the first time in Turing’s seminal 1936 paper. Turing himself did
not realize this.

Software is everywhere in biology, and the human genome can now be sequenced in
one hour! In meta-genomics, you extract DNA fragments from a drop of pond water,
you piece them together using neural net technology, and you assemble a library of
genomes, a complete ecology, from one drop of water!

Let us review von Neumann’s paper more carefully.

First of all, in it he is courageous enough to refer to artificial automata, comput-
ers, and to natural automata, biological organisms. In both cases according to von
Neumann, the fundamental mathematical idea is that of software.

It is software that provides the plasticity of the biosphere and of computer technol-
ogy.

Nature invented software eons before humanity did. Evo-devo is software archeology.

After this spectacular beginning, von Neumann abandoned biology for a while,
due to consulting for the military and his work in the Atomic Energy Commission
in Washington, in my opinion a complete waste of his remarkable talents, but no one
who hasn’t lived through that period should presume to judge.

He did finally return to biology.

I view his complicated cellular automata self-reproducing computer project as a
giant crossword puzzle he worked on as a respite from his Washington duties, but not
really at von Neumann’s intellectual level.
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Why do I say this?

Well, because the fundamental principle in biology resides in evolution, not self-
reproduction. Most animals reproduce sexually and therefore neither the father nor the
mother is copied exactly, their children are different.

In talk transcripts, and notes that were eventually published posthumously, it is
clear that von Neumann understood this perfectly.

But this giant crossword puzzle was a welcome respite from his soul-searing Cold
War duties.

The next step: Metabiology

What could von Neumann have done if he had not been struck down prematurely due
to cancer provoked by the radiation damage he sustained at Los Alamos during the
war? By the way, the great physicist Enrico Fermi also perished at about the same
time for the same reason.

Well, biological evolution is a million-pound marshmello. One has to simplify in
order to be able to prove any theorems, and the job of the mathematician is to prove
theorems.

The key insight, in my opinion, is to study the random evolution of computer
software instead of the random evolution of actual biological software, DNA. So let’s
make the model as simple as possible. Our organisms will be software organisms,
without bodies and without metabolism. And to make things even simpler, we consider
only a single mutating organism at a time, not a population.

That reduces the problem of evolution to a classical problem in probability theory
and statistical physics, a random walk. To be more precise, we consider a hill-climbing
random walk in software space, a new kind of mathematical object. The random walk
is called hill-climbing, because only mutations that increase the fitness are accepted.
Otherwise our software organism remains the same.

And what is our measure of the fitness of a software organism? The simplest possible
choice is to appeal to the Busy Beaver problem, a version of the halting problem, and
to have each organism calculate a single positive integer. The bigger the integer, the
better the organism.!

Finally, we have to specify our mutational model. Easy, choose a program at ran-
dom, an N-bit self-delimiting program with probability 2=, the measure space em-
ployed in our chapter on the halting probability €2. Give this randomly chosen program
the current organism as input, and let it produce the new mutated organism as output.

So, our model employs global algorithmic mutations, not indels and snips.

One annoying detail with this elegant model is that it employs Turing oracles,
because a software organism may never halt, and because an algorithmic mutation may
fail to generate a new organism. One has to be a little bit careful about restricting the
use of the oracle. ..

But it turns out, as my wife, epistemologist and philosopher of science Virginia
Chaitin, points out, that these oracles correspond to the environment in Darwinian

! Another interesting possibility would be for each software organism to calculate a single construc-
tive ordinal, the bigger, the better.
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evolution, because the new information, the biological creativity as it were, comes from
them. So the oracles are actually an asset, not a liability.

I call this metabiology, and my book Proving Darwin: Making Biology Mathematical
is all about this model.? In honor of von Neumann, from whom I learned so much, the
book begins with a portrait of von Neumann and ends with an extensive extract from
his 1948/1951 paper on biology that we have been discussing in this chapter.

I wish I could have shown it to von Neumann. He should have done it himself.?
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Chapter 8

Weyl, Leibniz and the Problem of
the Elegant Program, c. 1965, 1974

“As God cogitates and calculates, so the world is made.”—Leibniz

Hermann Weyl G. W. Leibniz

Hermann Weyl, perhaps David Hilbert’s best student, in addition to his books on
mathematics and mathematical physics, also published two books on philosophy and
one on aesthetics. Here are some of the titles: Philosophy of Mathematics and Natural
Science; The Open World: Three Lectures on the Metaphysical Implications of Science;
Symmetry; Space, Time, Matter; The Theory of Groups and Quantum Mechanics.

It was Weyl who discovered an extremely important idea buried in parts V and
VI of Leibniz’s Discours de métaphysique (1686): If arbitrarily complex laws are
permitted then the concept of law becomes vacuous because there is always
a law! A relevant excerpt is displayed below.
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mouyement reglé. Mais quand une regle est fort composée, ce
qui luy est conforme, passe pour irregulier,

Ainsi on peut dire que, de quelque maniere que Dieu
auroit @ créé le monde, il auroit toujours esté regulier et dans
un certain ordre general. Mais Dieu a choisi celuy qui est le
plus parfait, c'est a dire celuy qui est en méme temps le plus
simple EN HyroTHESES, ct le plus riche EN PHENOMENES ,
comme pourroit estre une ligne de geometrie dont la cons-
truction seroit aisée et les proprietes ® et effects seroient fort
admirables et d'une grande étendue. Je me sers de ces compa-

Discours de métaphysique VI
(Courtesy of https://gallica.bnf.fr/)

Please note that here Leibniz uses the word simple for simplicity and fort composée
for complexity, because there was not yet a word for complexity in the French language.

The Discours considers a graph with a finite number of points giving the behavior
f(t) of a physical system as a function of time ¢. The complexity is measured via
the size of an equation passing through this finite set of points. AIT (algorithmic
information theory) changes the context. Now one considers a finite string of bits .5,
the theory is a binary program P that outputs S, and the complexity of the theory P
is the number of bits in P.

If there is no theory P substantially smaller than S, then S is irreducible or
algorithmically random. Most n-bit strings S are, they require programs P of almost
the same size n.

Furthermore, an elegant program P is the smallest one that calculates its output
S, it is the best, the simplest theory for its output S.

Before continuing our analysis of this fundamental text by Leibniz, some words
about the history of AIT.

Program-Size Complexity, Algorithmic Information
Content, and Conceptual Complexity: Andrey Kol-
mogorov, Ray Solomonoff, Gregory Chaitin, c. 1965

In 1965 there was an Iron Curtain between the West and the East. There was only
one computer science journal in the West, called the Journal of the Association for
Computing Machinery. Computational complexity theory was just beginning, and most
people were interested in run-time complexity. Only three of us preferred to look at
program-size complexity instead of run-time complexity.

There was Andrey Kolmogorov in the Soviet Union, in Moscow, a distinguished
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elderly mathematician, Ray Solomonoff in Cambridge, Massachusetts, who was a friend
of Marvin Minsky at MIT, and there was me, an undergraduate at the City College in
New York City.

Ray was interested in machine learning and artificial intelligence, like Marvin Min-
sky, and in particular he was interested in the problem of induction, in how to predict
the future from the past.

Kolmogorov and I were mathematicians and we both wanted to be able to define a
random, structureless or patternless finite string or infinite sequence of bits. And I, I
alone, thought that this must have something to do with Gddel incompleteness, as of
course turned out to be the case, with a vengeance.

None of us were aware of Leibniz’s highly relevant reflections in the Discours de
métaphysique. 1 only discovered Leibniz much later in life, through Weyl, although a
“rational reconstruction,” as Imre Lakatos called it, must necessarily start with Leibniz,
as we are doing here.

Returning now to Leibniz

In the above excerpt from the Discours, Leibniz asserts that this is the best of all
possible worlds in the sense that God minimizes the bricks, the laws He uses to build
the world, and simultaneously maximizes the diversity and richness of the resulting
world. The beauty, simplicity and harmony (and indeed the comprehensibility) of the
world are aspects of God’s perfection.

This is how Leibniz shows that theism and the new mechanical philosophy, now
called modern science, are actually compatible—in part because he thought that athe-
ism would lead to chaos and social breakdown!

Choosing the Programming Language

In order to use the notion of program-size complexity as a mathematical tool, one has to
decide on the programming language. One possibility is to choose a real programming
language, like LISP, and to measure the size of LISP S-expressions in characters of code.
This works to a certain extent.

But for the best mathematical results it is better to use somewhat artificial binary
programming languages in which program-size complexity is measured in bits. Such
programming languages are defined mathematically as follows: We somehow pick a
particular universal machine U that can imitate any other computer C' given program
p by only adding a fixed number of bits of information to p, a self-delimiting prefix 7¢:

U(me p) = C(p).

In other words, prepend 7 to p to convert a program for C' into a program for U. And
to make m¢ self-delimiting, just double each bit and place a pair of unequal bits at the
end as punctuation.

The intellectual motivation for all of this was to analyze mathematically the scientific
method, to get a grasp of the complexity of a scientific theory. This was what interested
Solomonoff the most. But what I wanted to do was apply these new ideas, this new
toolkit, to incompleteness.
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Here we go!

An elegant program is the smallest program for its
output and also the best theory for its output

Actually it is better to say that an elegant program is one with the property that no
smaller program written in the same language produces the same output that it does,
because there may be ties. There may be several elegant programs for the same output,
all with the same size.

There are only finitely many provably elegant pro-
grams!

Proof: Consider the first provably elegant program that is substantially larger in size
than the software for enumerating all the theorems of your formal axiomatic theory.
But this yields an even smaller program for that supposedly elegant program’s output!

This software must be written in the same programming language as the elegant
programs that one is considering.

In my opinion, this is the most natural approach to incompleteness. It makes incom-
pleteness obvious, it just hits you in the face!, thus illustrating Alexandre Grothendieck’s
maxim that when you find the right context for a proof, the proof becomes trivial.

The Halting Problem Again

Corollary: The unsolvability of the halting problem, because if you can solve the halting
problem for all programs up to a certain size, then you can determine all the elegant
programs up to that size. The size can be measured in characters or in bits, depending
on the programming language being considered.

Converse: determining as many elegant programs as
possible

The axiom you need to know is either the < N-character program that takes longest
to halt, or the N-bit string giving the number of programs < N bits in size that halt.

With this information one can solve the halting problem for all programs < N
characters in size or < N bits in size.

Epistemology as Information Theory

What we have presented in this chapter is actually a complete reformulation of episte-
mology in terms of information theory, in terms of algorithmic information. We have
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analyzed both the scientific method and the capabilities and limitations of formal ax-
iomatic theories, both physics and mathematics, in terms of information. And from
this information-theoretic point of view, scientific theories and mathematical theories
do not look that different.

*¥* The Platonic World of Mathematical Ideas is
Quasi-Empirical ***

As another Russian mathematician, Vladimir Arnold, put it, mathematics is just like
physics, except that the experiments are cheaper! No messy wetlabs, no giant acceler-
ators, just computer experiments!

But in both cases one seeks to unify, to simplify, to find common principles to
organize ones experiences, physics experiences or math experiences, as the case may
be.

In other words, theories are compressions of our experience, be it in physics or in
mathematics.

For a more nuanced argument, please see the essays by Imre Lakatos and Gregory
Chaitin in the collection Tymoczko, New Directions in the Philosophy of Mathematics
cited below. See also the extensive quasi-empirical remarks by Kurt Godel in the
chapter about him.

In the next chapter, we take this train of thought to the next level. We refor-
mulate AIT in terms of self-delimiting programs and crash into the halting probability
2, which even refutes Leibniz’s principle of sufficient reason!
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Chapter 9

Emile Borel and the Halting
Probability Omega, 1974
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The Halting Probability

Emile Borel

(A droite, une métaphore de ’Oméga de Chaitin par Jean-Christophe Benoist)

EL AZAR, 1935

Many years ago, in my paternal grandparents’ home in Buenos Aires, I found a book
with the intriguing title El Azar, randomness.? It was written by Emile Borel, a member
of the first generation of mathematicians who adopted a more abstract set-theoretical

1Originally published in 1914 by Félix Alcan as Le Hasard.
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point of view, and one of the creators of measure theory and modern probability theory.
In 1909 he proved the following beautiful theorem:

Borel’s proof that almost all reals are “normal,” 1909

With probability one, a real number in the unit interval has the property that in any
base b and for blocks of digits of any fixed size k, the limiting relative frequencies will
exist and be equal to b~*. The set of non-normal reals in the unit interval has measure
zero, they are possible but infinitely unlikely.

Here an interval’s measure (or probability) is its size. The entire unit interval has
probability one, and a fixed initial n-bit string of bits in the base-two numeral for a
real o corresponds to a subinterval of the unit interval of size 27",

For a concise, self-contained proof, see the work by Hardy and Wright in the Liter-
ature section below.

Borel’s know-it-all real number, 1927

The nth digit answers the nth yes/no question in French!?

Change this to: The nth bit tells us whether the nth computer program ever halts!

Then observe that n instances of the halting problem are only log, n bits of infor-
mation, because you only need to know how many halt to find out which ones halt.

This leads us to the halting probability €2, whose first n bits tells us for each program
up to n bits in size, whether or not it halts. And  is the most compressed possible
way to do this, it is totally irredundant, totally incompressible. From this it is possible
to prove that € is a Borel normal real number.?

After this introduction involving Borel, let’s define the halting probability {2 more
carefully.

Picking a New Universal Computer U
Recall that in the previous chapter we stipulated that

U(Wc p) = C(p)

Now not only m¢ must be self-delimiting, p must also be self-delimiting.
To make an arbitrary n-bit string self-delimiting, put in front a prefix giving n in
base-two, with each bit repeated and two unequal bits at the end. The result is

n+ 2log,n + 2
bits long. You can iterate this, resulting in

n + logy n + 2log, logy n 4 2

2See Borel, Lecons sur la théorie de fonctions.
3See Cambridge Tracts in Theoretical Computer Science, Vol. 1, 1987.
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bits, or
n + log, n + log, log, n + 2 log, log, logy n + 2

bits, etc. This is not quite right because the base-two numeral for n is not exactly log, n
bits long, but it gives the general idea.

Does an N-bit String Have Program-Size Complexity
N or N +logy N?

More precisely, the best way to make an N-bit string self-delimiting is to precede it by

the smallest possible self-delimiting program to calculate N, which is by definition H (V)

bits long. More generally, H(X) denotes the size in bits of the smallest self-delimiting

program to calculate the digital object X, the algorithmic information content of X.
So most N-bit strings require programs of about this number of bits:

N + H(N).

These are the irreducible N-bit strings. As above, H(NN) can be approximated by log, N
plus additional logarithmic terms, but is sometimes, rarely, much, much smaller, if N
is of a special form, such as a power of 2, or a factorial number, 2™ or n!.

That one should rework AIT in this manner, basing it on self-delimiting programs,
was realized by Gregory Chaitin and by Leonid Levin, c¢. 1974. The resulting theory
of program-size complexity is extremely elegant, featuring the following subadditivity
property

HX)Y)<HX)+HY)+¢,
which says that it is possible to get a program to calculate the ordered pair X and Y
by using ¢ bits to stitch together the individual programs to calculate X and Y.

More precisely, this inequality says that (the algorithmic information content of the
ordered pair X and Y') is bounded by (the algorithmic information content of X') plus
(the algorithmic information content of Y) plus a constant c.

This may be restated more gracefully as follows: The joint information of X and
Y is bounded by the sum of the individual information contents of X and Y plus a
constant.

Then one can define the mutual information between X and Y to be

HX)+H(Y)—-H(X,Y),
and the relative information of X given Y to be
H(X,Y)—H(Y).
Furthermore, here is the equation for the halting probability Omega:
0 < Q = Z 9—(size in bits of p) _ ]
U(p) halts

In other words, €2 is the total probability of all the programs p that halt when run on
U, in which an N-bit program has probability 2=%. This converges, and to a sum < 1,
only because we have switched to self-delimiting programs. Otherwise this sum would
diverge to co and we could not define the halting probability.
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Complexity dips in infinite sequences

Consider an infinite sequence of independent tosses of a fair coin. Can we define an
algorithmically random or irreducible infinite sequence of bits to be one for which the
complexity of its initial N-bit segments stays as high as possible, namely, near to
N+ H(N) ? No! Why is that? Well, it’s because there must be complexity dips due to
runs of identical bits as dictated by the law of the iterated logarithm in William Feller’s
classic An Introduction to Probability Theory and Its Applications, Vol. 1. By the way,
the law of the iterated logarithm is originally due to Aleksandr Khinchin in 1924.
Now we get to the mathematical climax of this chapter, which is that there are in
fact three different definitions of an irreducible infinite sequence of bits which look very
different but that in fact turn out to be equivalent, always a good sign. Here they are:

Three Very Different Definitions of a Random Infi-
nite Sequence/Real Number p

e Gregory Chaitin: There is a constant ¢ such that for every N, the first NV bits of
the sequence p have program-size complexity greater than N — c.

e Per Martin-Lof: The real number p is not contained in any set of real numbers
(in the unit interval with uniform measure) of constructive measure zero, i.e.,
with arbitrarily small computably enumerable covering, a computably enumerable
covering that is uniformly computable given the arbitrarily small size € = 2= of
the covering that is desired.

Note that the union of all sets of reals of constructive measure zero is also of
measure zero, since there are only a countable infinity of such sets.* So almost all
reals in the unit interval are Martin-Lof random, with probability one.

e Robert M. Solovay: His definition is similar to Martin-L6f’s but more convenient
mathematically since it is closely related to the Borel-Cantelli lemma as presented
in William Feller’'s An Introduction to Probability Theory and Its Applications,
Vol. 1. This lemma was used by Borel to show that almost all real numbers in
the unit interval are normal, i.e., with probability one.

Borel-Cantelli lemma: 1f the sum of the probabilities of an infinite sequence of
events A,,n =0,1,2,... is finite, that is, converges,

> Pr(4,) < o

then the probability that infinitely many of them occur is 0. Furthermore these
events do not have to be independent. The events A,, are in (are subsets of) the
unit interval of real numbers = {0 < z < 1} with uniform measure.

Solovay criterion: A real number p is random if it is never contained in in-
finitely many A,, that are constructively defined as a function of n and for which
>, Pr(A,) converges.

4A set is said to be a countable infinity if it can be put in a one-to-one correspondence with
{1,2,3,...}.



9. The Halting Probability Omega 47

() satisfies all three of these definitions of randomness.” Therefore, for example, € is
Borel normal in every possible base for blocks of digits of any fixed finite size. The
limiting relative frequencies always exist and are identical, no matter the base/radix in
which the numerical value of € is written.

Infinite Irreducible Complexity in Pure Mathematics

We have spent a great deal of time in this chapter on technical mathematics. But let’s
now turn to philosophy and to epistemology.
Consider whether each individual bit in the base-two expansion of the numerical

value of
2 =.0111001010...

isa0oral.

An N-bit formal axiomatic theory can determine at most N + ¢ bits of the base-two
numerical value of (2. When we say that something is an N-bit theory, we mean that the
software for enumerating all the theorems of the formal axiomatic theory has N bits.
But you have to remember that in this chapter all programs have to be self-delimiting,
even ones that go on forever.

The numerical values of the individual base-two bits
of () are an infinite sequence of assertions that are
true for no reason!

Thus the bits of 2 violate Leibniz’s principle of sufficient reason, which states that if
something is true it must be true for a reason. In mathematics, of course, the reason is
called a proof, and the job of the mathematician is to find the reason.

Please note that anything can be proven by adding it, or something equally complex,
as a new axiom. So this doesn’t count as a proof. But if you want to determine the
numerical values of the individual base-two bits of €2, this is the only way that you can
do it.

Necessary truths versus Contingent truths

The bits of € are a perfect simulation in pure mathematics, where all truths are nec-
essary, of contingent truths, more precisely, of infinitely many independent tosses of a
fair coin.

Does God play dice in pure mathematics?

Einstein asserted that God doesn’t play dice in the physical universe, that everything
is deterministic, predictable in principle, at least to Laplace’s famous demon. Never-
theless, it appears that God does play dice in pure mathematics. The bits of €2 show

5There are two books proving this in the Literature section below.
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that this is so. Is this a nightmare for the rational mind? Not really! It actually sends
us off in the direction of biology.

*** The Platonic World of Mathematical Ideas is Bi-
ological ***

2 shows that mathematics is more biological than biology itself. Biology has immense
but finite complexity, but mathematics provably has infinite complexity!

The complexity of the field of biology is illustrated by the size of this book: Molecular
Biology of the Cell, 7th Ed., with seven co-authors, published in 2022, 1552 pages! Or
look at the size of the human genome: 3.2 billion base pairs. Whereas one can put the
fundamental equations of mathematical physics on (both sides of) a college student’s
T-shirt. And fields of mathematics usually present their axioms in a few pages.

Based on this clue, in the next chapter we shall take a look at creativity in math-
ematics and in biology. But before doing that, I want to tell you a little bit more
about €2, some rather technical material which however also has some philosophical
significance.

An exponential diophantine equation for the bits of
the halting probability Omega

Yuri Matijasevic and James P. Jones have shown how to translate register machine
programs into exponential diophantine equations, diophantine equations with variable
exponents, using a beautiful theorem of Edouard Lucas regarding the even/odd parity
of binomial coefficients. The resulting equation has many variables and has only one
solution if the register machine program halts and no solutions if the register machine
program fails to halt. Using their work it is easy to construct a (large) exponential
diophantine equation with a parameter k£ which has infinitely many solutions if the kth
bit of €2 is a 1 and which has only finitely many solutions if the kth bit of {2 is a 0.

In my 1987 Cambridge University Press monograph (see below), this was done for a
specific halting probability 2 that can be calculated very, very slowly in the limit from
below® using a LISP program written in a toy version of LISP for which an interpreter
was programmed on a register machine.

Therefore, the halting problem and the halting probability can both be expressed
as arithmetical statements. They are not just about theoretical computer science.

Choosing a specific universal computer U for algo-
rithmic information theory

I did this in 1998 using yet another specially designed dialect of LISP, for which I wrote
an interpreter in C. Then it is possible to run programs on U and to show that, for

SThere is of course no regulator of convergence or this 2 number would be a computable real
number, which is not at all the case.
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example, an N-bit theory can determine at most N + 15328 bits of 2. Without picking
a specific U, and furthermore one that is easy to program, one is only able to show that
an N-bit theory can determine at most N + ¢ bits of €2, with absolutely no idea how
big ¢ may actually be.
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Chapter 10

Creativity in Mathematics and in
Biology, 2012

“A mathematician who is not also something of a poet will never be a
complete mathematician.”—Karl Weierstrass

LONHARD EULER. Srinivasa Ramanu_j an

Mathematical creativity

One paper by Euler every week on beautiful new mathematics, in every possible field,
even after he went completely blind! Volume after volume of his collected works, his
Opera Omnia. What could the source of all this creativity be?!

o1
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And how about Ramanujan, who affirmed that “An equation for me has no meaning,
unless it expresses a thought of God.” And that a goddess wrote equations on his tongue
whilst he slept.

Ramanujan was G. H. Hardy’s greatest discovery. One day at Cambridge University
Hardy received a letter from an unknown in India containing amazing formulas, spec-
tacular infinite continued fraction expansions and startling infinite series expansions.
“Is an imposter of genius more likely than a mathematician of genius?,” Hardy asked
himself. Clearly, no! Such was Hardy’s analytic mind at work. It was World War I,
Hardy’s friend Bertrand Russell had been dismissed from Cambridge because he was
a pacifist, and Hardy’s best students were dying in the trenches. Ramanujan became
Hardy’s great project, his solace amongst the slaughter, because Ramanujan had no
idea what a proof was, he worked entirely by some kind of intuition and feeling for
form, by inspiration, no less!

So Hardy tried to teach Ramanujan what a proof was, and together they wrote
some wonderful papers. As C. P. Snow says, for once, virtue was rewarded. But it
was fatal for Ramanujan, who was away from his wife, could barely survive in medieval
Cambridge without heat or hot water, and, during wartime, could not obtain the fruits
and vegetables that he as a vegetarian required. Ramanujan went back to India to die
leaving notebooks full of unfinished work.

Biological creativity

Such is the mystery of mathematical creativity at its finest. Now let us turn to biological
creativity as explicated by Charles Darwin, in particular in his youthful work The
Voyage of the Beagle, a story of adventure and insight. Darwin, a naturalist, was
greatly impressed by the variety of forms he encountered in his voyage around the
world in the Beagle, and after reading Malthus, postulated that random variations
supplemented by selection, as exercised by his gentlemen friends who bred prize roses
or champion horses, could eventually lead to the evolution of new species.

Is randomness really enough of a creative force to accomplish this? That is the
question. Perhaps mathematics can shed some light on this. After all, in mathematics
we do know something about creativity. Godel’s incompleteness theorem is usually
viewed pessimistically, but it can also be viewed as showing that math offers unlimited
scope for imagination and creativity, that it is not a closed system.

That is what metabiology attempts to accomplish, to transform incompleteness and
uncomputability into a toy model of biological evolution. The key idea, as I stated in
the chapter on von Neumann, is to study the random evolution of computer programs,
artificial software, instead of the random evolution of DNA, which is natural software.

I can actually prove a few little theorems about how such a system can evolve, which
suggests to me that this might possibly be a fruitful area of research.

I should say a little more about my toy model. Mathematically, it amounts to
a hill-climbing random walk in software space, because mutations are ignored unless
they can increase the fitness. Furthermore in my model, evolution is not driven by
adaptation to the environment. It is driven by intrinsic, endogenous creativity. My
software organisms are mathematicians who wish to become better, to climb to higher
and higher constructive ordinals, as it were. So there is no limit to how far they can go.
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Recall Lee Van Valen’s Red Queen principle, which states that evolution is intrinsic,
not driven by changes in the environment as is usually thought. You have to run as
fast as you can to stay in the same place, because everyone else is also doing so!

Another amusing aspect of the model is that it turns out that localized mutations
such as indels and snips make for an extremely ugly toy model, at least from a mathe-
matical point of view. Instead I had to postulate global algorithmic mutations, which
turns out to correspond in some ways to the fact that the Extended Evolutionary Syn-
thesis has also concluded that richer mutational mechanisms are needed to account for
the bursts of creativity that we see in the fossil record, such as the Cambrian explosion,
or with punctuated equilibrium.

Perhaps this line of research is too conceptual, too theoretical, too abstract for our
pragmatic age. But if I were a little bit younger I would strive to continue in this direc-
tion. Fortunately my wife, epistemologist and philosopher of science Virginia Chaitin,
and my former Rio de Janeiro student Felipe Abrahao, are doing so. Furthermore
Hector Zenil, on whose Ph.D. committee I was happy to sit some years ago, has been
exploring practical applications of related ideas. Indeed, he has built a startup called
Oxford Immune Algorithmics, and Felipe is heading to the U.K. to participate. So
perhaps not all is lost. I look forward to hearing what they accomplish.

Charles Darwin
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Chapter 11

Against Materialism: Information
and Consciousness

“As God cogitates and calculates, so the world is made.”—Leibniz
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Digital Philosophy

According to Tobias Dantzig in his classic, Number, the Language of Science:

It is the mystic elegance of the binary system that made Leibnitz exclaim:
Omnibus ex nihil ducendis sufficit unum. (One suffices to derive all out of
nothing.) Says Laplace:

95
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“Leibnitz saw in his binary arithmetic the image of Creation ...
He imagined that Unity represented God, and Zero the void; that
the Supreme Being drew all beings from the void, just as unity
and zero express all numbers in his system of numeration. This
conception was so pleasing to Leibnitz that he communicated it to
the Jesuit, Grimaldi, president of the Chinese tribunal for mathe-
matics, in the hope that this emblem of creation would convert the
Emperor of China, who was very fond of the sciences. I mention
this merely to show how the prejudices of childhood may cloud
the vision even of the greatest men!”

And MIT Press has recently published an important addition to the Leibniz lit-
erature, Strickland and Lewis, Leibniz on Binary, with much new information about
Leibniz’s vision that the entire universe may be built out of information, out of Os and
1s, which we now call digital philosophy:

e Pythagoras, Plato: All is number, God is a mathematician!
e Leibniz, Digital Philosophy: All is algorithm, God is a programmer!

This vision is a fitting culmination to all the material on computation and infor-
mation throughout this book. And it also ties in with David Chalmers’ speculation in
his The Conscious Mind: In Search of a Fundamental Theory that information theory
may provide the basis for a theory of consciousness.

Indeed, how about a world in which mind and information are primary, and matter is
an epiphenomenon? This is a panpsychist scenario, in which different minds or different
monads have differing degrees of perception, as in the Leibniz Monadology. As my wife,
philosopher Virginia Chaitin, points out, perhaps this is also analogous to the different
degrees of perception made possible by Turing oracles O,.

But is it possible to identify the fundamental nature of reality by pure thought
alone? What does Nature have to say? Well, Nature speaks with many voices.

The history of physics, as presented in Einstein and Infeld, The Fvolution of Physics,
has been marching away from materialism and in the direction of idealism, in my opin-
ion. From the mechanical philosophy as practiced by Galileo, Newton already intro-
duces non-materialistic action at a distance, which only gets worse with Maxwell’s elec-
tromagnetic fields and Einstein’s field theory of gravity, which postulate infinitesimal
propagation rather than action at a distance.

The big break is with quantum mechanics, which has been with us for a century,
and which in my opinion is clearly an idealistic theory. For the Schrodinger equation
does not deal with electrons, it deals with the Schrodinger v function, a probability
field with phase, which contains our knowledge about the electron.

Perhaps this is even clearer with quantum information, quantum computation and
qubits, which share an obvious analogy with algorithmic information theory and its
classical bits.

I must, however, express my discontent with quantum mechanics, which as I said has
already been with us, its fundamental assumptions unchallenged, for an entire century.
I attribute this more to the sociology of science, i.e., to what Einstein would refer to as
“the herd instinct” than to the, in my opinion, mistaken view that quantum mechanics
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is the final theory. Indeed, there are serious observational anomalies that our current
physics does not seem able to explain: the dark matter, the energy source of the solar
corona, and ball lightning.

Amazingly enough, Randell Mills has shed some light on these matters. Building
on the work of one of his professors at MIT, Hermann Haus, Mills has developed a
classical theory of the hydrogen atom, with the consequence that according to Mills
there are states of the hydrogen atom below the conventional ground state according
to quantum mechanics. In other words, according to Mills’ theory, there are stable
hydrogen atoms in which the electron is orbiting closer to the proton than is permitted
in conventional quantum mechanics. These he calls hydrinos, and he believes that they
are the infamous dark matter and can explain the unaccountably high temperature of
the solar corona.

Mills and his colleagues have accumulated a substantial amount of experimental
evidence for hydrinos that has been published in reputable journals, though naturally
there is still considerable room for skepticism regarding the theory that predicted them.

Furthermore, he has built prototype devices for creating hydrinos that he puts
forward as, potentially, important new sources of green energy. Please take a look at
his website at https://brilliantlightpower.com or at the book by by Brett Holverstott,
Randell Mills and the Search for Hydrino Energy.

Please stay tuned for further developments!

Changing topic, I should like to tell you about a remarkable development, Stephen
Wolfram’s metaphysics of the Ruliad, the entangled sum of the time evolution of all
possible discrete, algorithmic laws of physics and all possible mathematical formal ax-
iomatic theories, hence the title of one of his many recent books, Metamathematics:
Foundations € Physicalization. This is a breathtaking new idea, and constitutes an
approach to metaphysics that is completely orthogonal to the work presented in this
book. Highly recommended!

We have reached the end of our journey, the end of the story of my personal quest to
understand the incompleteness phenomenon discovered by Kurt Godel. But the human
spirit will continue to ponder and question, hopefully forever. Perhaps you, dear reader,
can illuminate these questions with new viewpoints and new insights? Or perhaps this
will be achieved by the artificial super-intelligences that have now appeared on the
horizon?
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Chapter 12

Transhumanism or Posthumanism?

In this book we have, so to speak, been concerned with Algorithms 1.0, that are written
in programming languages, not with Algorithms 2.0, that are embodied in neural nets.
This is indeed a momentous paradigm shift.

Marvin Minsky at MIT, who liked to provoke people, used to declare that we are
a carbon-based life-form that is creating a silicon-based life-form to replace us. The
spectacular recent success of neural net artificial general intelligence (AGI) has made
Minsky’s provocation into a real possibility.

Elon Musk has declared that the goal of his new company xAl is “to understand
the true nature of the universe,” a laudable goal, and excellent for recruiting. But if he
achieves this goal, will we be able to understand what his artificial super-intelligence
has achieved?

As my wife, philosopher Virginia Chaitin, reminds me, Giorgio Colli in his La nascita
della filosofia states that the problem with trying to understand the prophecies of the
gods, even when they do not wish to fool us, is that human language cannot express
thoughts at the level of perception of the gods. It would be like lecturing on Goethe’s
Faust to an ant in the garden.

And we may have the same difficulty with an insight from an AGI that understands
80 human languages and their corresponding cultural contexts. As Virginia points out,
this is analogous to a mind containing the Turing oracle O, trying to understand a
thought realized by a mind with an oracle Oz with a < 3.

Referring again to Musk, perhaps a high-bandwidth Neuralink connection between
humans and AGIs will result in a symbiosis, rather than a replacement?

As it says in Mark Twain’s Huckleberry Finn, you pays your money and you takes
your choice.
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Appendix A

Cum Deus calculat. .. fit mundus

“As God cogitates and calculates, so the world is made.”—Leibniz

Stephen Wolfram was curious about the source of this Leibniz quotation that heads
Chapter 8 and Chapter 11. Here we report what he found. First of all, what did
Leibniz actually say? The original Latin is this:

“Cum Deus calculat et cogitationem exercet, fit mundus.”—Leibniz

However, the version that the author of this book first found, in a text by Heidegger,
is abbreviated:

“What does Leibniz say about God in regard to the universe? In 1677 (at
the age of thirty-one) Leibniz wrote a dialogue on the Lingua rationalis,
that is, on calculus, which is the sort of reckoning that is in the position of
giving a full accounting of the relations between word, sign, and thing—and
thus for everything that is. In this dialogue and in other essays, Leibniz had
anticipated the fundamentals not only for what today are used as thinking
machines, but even more, of what determines their manner of thinking. In
a hand-written marginal note to this dialogue Leibniz remarks: Cum Deus
calculat fit mundus. When God reckons, a world comes to be. All that is
needed is a ready and willing glance into our atomic age in order to see
that if God is dead, as Nietzsche says, the calculated world still remains
and everywhere includes humans in its reckoning inasmuch as it reckons
up everything to the principium rationis.”—Heidegger, The Principle of
Reason

What happened? What happened is that this remark by Leibniz became known
because Louis Couturat placed it on the cover of his influential 1901 book La Logique de
Leibniz. But as you can see below, where we reproduce that cover, Couturat abbreviated
Leibniz’s Latin to Cum Deus calculat. .. fit mundus, and then Heidegger removed the
ellipsis.

At any rate, the original source is a marginal note in a short Dialogus dated 1677.
You must remember that the immense Leibniz Nachlass conceals many treasures. Little
was actually published during his lifetime, and there is no definitive statement of his
views, which were in a constant state of evolution.
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Appendix B

Interviews

1. “Complexity, Metabiology, Godel, Cold Fusion,” Theories of Everything with Curt
Jaimungal, 2023: https://www.youtube.com/watch?v=zMPnrNL3zsE

2. “Consistent Systems are ‘Boring,” Paradoxes are Fertile,” Godelian Letters by
Sami Al-Suwailem, 2023: https://medium.com/godelian-letters/interview-with-g
regory-chaitin-b4e63460c94b

3. “Digital Philosophy and Omega,” Just Nowhere with Samuel Zinner, 2022: https:
//www.youtube.com/watch?v=ht3jxGPhHo8

4. “A Conversation between Gregory Chaitin and Stephen Wolfram at the Wolfram
Summer School,” 2021: https://www.youtube.com/watch?v=d8MWRkS1pek

5. “A Conversation between Gregory Chaitin and Stephen Wolfram, Part 2,” 2021:
https://www.youtube.com/watch?v=Mtt6PWt0Kcg

6. “Randomness, Information Theory, and the Unknowable” with Robert J. Marks,
2021: https://mindmatters.ai/podcast/ep167/

7. “Why Are We Here?” with Ard Lewis and David Malone, 2017: https://www.wh
yarewehere.tv/people/gregory-chaitin/

8. “Against Method” by Karol Jalochowski, 2014: https://vimeo.com/171062577, http
s://www.imdb.com/title/tt5127090/, https://www.youtube.com/watch?v=uEtqJSRz3mE
[Also featuring Virginia Chaitin.]
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About the Author

Please see “The Enigmatic World of Gregory Chaitin” at https://www.youtube.com/wa
tch?v=z4FWfr6tf0A. Erratum: Chaitin was awarded the Leibniz Medal in 2007, not in

2012.
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